1. Write $(1+\sqrt{3})^{2}$ in the form $a+b \sqrt{3}$.
2. Find $\sqrt{32}+\sqrt{50}$, giving your answer in the form $k \sqrt{2}$.

3(a). B0, B1, B2, ... , B10 are labels given to different sized sheets of paper.
The lengths of the sheets are related as follows:

and so on from B10, the smallest size, up to B0 the largest size.

The length of $B 7$ paper is 125 mm .
(i) What is the exact length of B6 paper?
(i)
mm [1]
(ii) What is the length of B5 paper?

Give your answer in its simplest form.
(ii)
(b). The length of B1 paper is 1000 mm .

Find the length of B2 paper.
Give your answer in the form $k \sqrt{2}$, where $k$ is an integer.
4. Simplify the following, giving your answer in the form $k \sqrt{2}$, where $k$ is an integer.

$$
8 \sqrt{50}+\frac{30}{\sqrt{2}}
$$

5. Multiply out and simplify.

$$
(4+\sqrt{3})(1-\sqrt{3})
$$

Give your answer in the form $a+b \sqrt{3}$ where $a$ and $b$ are integers.
Show all your working.
6. Multiply out and simplify fully.
$(3+\sqrt{7})(4+\sqrt{7})$

You must show your working.

$$
(1+\sqrt{3})(4+2 \sqrt{3})
$$

(b). Rationalise the denominator in this expression.

$$
\frac{3+\sqrt{2}}{\sqrt{2}}
$$

8. 

Simplify fully.
(i) $\sqrt{50}+\sqrt{2}$
(ii) $\frac{10}{\sqrt{6}}$

9.
(Fi)
Write $\sqrt{12}+\sqrt{75}$ in the form $k \sqrt{3}$
10.

Show that $\frac{(4+2 \sqrt{5})}{\sqrt{5}-1}$ can be simplified to $\frac{3 \sqrt{5}+7}{2}$.


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 |  |  |  | $55 \sqrt{2}$ | 4 | Or B1 for $5 \sqrt{ } 2$ or $40 \sqrt{2}$ <br> And M1A1 for <br> $30 \sqrt{2}$ <br> $\frac{30}{\sqrt{2} \sqrt{2}}=15 \sqrt{2}$ <br> Examiner's Comments <br> This question differentiated <br> well with some stronger <br> candidates successfully <br> arriving at the correct <br> answer. Many gained a <br> mark for knowing to multiply <br> $\frac{30}{\sqrt{2}}$ by $\frac{\sqrt{2}}{\sqrt{2}}$ but many of these <br> did not get the second mark <br> for cancelling |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | $4,-4 \sqrt{3},[+][1] \sqrt{3},-\sqrt{3} \sqrt{3}$ <br> all seen $1-3 \sqrt{3}$ | M2 <br> B1 | M1 for two of ${ }^{4,-4 \sqrt{3},[+[1] \sqrt{3},-\sqrt{3} \sqrt{3}}$ seen <br> Examiner's Comments <br> There were many correct answers here, though often these were obtained using a calculator. Most knew how to multiply out two brackets but many could not do this correctly. Frequently, negative signs were omitted and problems also occurred when collecting terms. | Allow -3 or $-\sqrt{9}$ or $-\sqrt{3^{2}}$ for $-\sqrt{3} \sqrt{3}$ |
|  |  | Total | 3 |  |  |
| 6 |  | Three of $3 \times 4 ; 3 \times \sqrt{ } 7 ; 4 \times$ $\sqrt{ } 7 ; \sqrt{ } 7 \times \sqrt{ } 7$ oe <br> $19+7 \sqrt{ } 7$ final answer | M1 <br> B1 | Examiner's Comments <br> This question was answered well. Most obtained the correct answer and those who decided to give their answer as a decimal usually did so after correctly multiplying out the brackets. Surprisingly, some left their answer as $12+7 \sqrt{ } 7+7$ and others had difficulty in finding $3 \sqrt{ } 7+$ $4 \sqrt{ } 7$. |  |
|  |  | Total | 2 |  |  |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | a | $10+6 \sqrt{3}$ | 2 | M1 for three correct terms from $4[+] 2 \sqrt{3}[+] \quad 4 \sqrt{3}$ [+] $2 \sqrt{3} \sqrt{3}$ oe or better <br> Examiner's Comments <br> Many were able to expand the brackets and produce four terms, although they did struggle to simplify $2 \sqrt{ } 3$ $\times \sqrt{ } 3$ and $2 \sqrt{ } 6$ was a common response. It was also surprising that having reached $4+6 \sqrt{ } 3+6$ many did not simplify this expression. | eg $2 \sqrt{ } 9$ is acceptable for 2 $\sqrt{ } 3 \sqrt{ } 3$ |
|  | b | $\frac{2+3 \sqrt{2}}{2} \mathrm{oe}$ | 2 | M1 for $\frac{(3+\sqrt{2}) \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ oe <br> Examiner's Comments <br> Many knew they had to multiply the numerator and denominator by $\sqrt{ } 2$ but they only multiplied the 3 by $\sqrt{ } 2$ and not the $\sqrt{ } 2$ as well. Some just cancelled the two $\sqrt{ } 2 \mathrm{~s}$ and gave the answer as 3 . | ie for intention to multiply top and bottom by $\sqrt{ } 2$ |
|  |  | Total | 4 |  |  |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 |  |  |  |  |  |  |  |




